Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364113

RESUMO

Evolutionary analyses have estimated that ∼60% of nucleotides in intergenic regions of the Drosophila melanogaster genome are functionally relevant, suggesting that regulatory information may be encoded more densely in intergenic regions than has been revealed by most functional dissections of regulatory DNA. Here, we approached this issue through a functional dissection of the regulatory region of the gene shavenbaby (svb). Most of the ∼90 kb of this large regulatory region is highly conserved in the genus Drosophila, though characterized enhancers occupy a small fraction of this region. By analyzing the regulation of svb in different contexts of Drosophila development, we found that the regulatory information that drives svb expression in the abdominal pupal epidermis is organized in a different way than the elements that drive svb expression in the embryonic epidermis. While in the embryonic epidermis svb is activated by compact enhancers separated by large inactive DNA regions, svb expression in the pupal epidermis is driven by regulatory information distributed over broader regions of svb cis-regulatory DNA. In the same vein, we observed that other developmental genes also display a dense distribution of putative regulatory elements in their regulatory regions. Furthermore, we found that a large percentage of conserved noncoding DNA of the Drosophila genome is contained within regions of open chromatin. These results suggest that part of the evolutionary constraint on noncoding DNA of Drosophila is explained by the density of regulatory information, which may be greater than previously appreciated.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , DNA , DNA Intergênico/genética , DNA Intergênico/metabolismo , Elementos Facilitadores Genéticos
2.
Ann N Y Acad Sci ; 1524(1): 22-29, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37002544

RESUMO

Since the Modern Synthesis, our ideas of evolution have mostly centered on the information encoded in the DNA molecule and their mechanisms of heredity. Increasing evidence, however, suggests that epigenetic mechanisms have the potential to perpetuate gene activity states in the context of the same DNA sequence. Here, we discuss recent compelling evidence showing that epigenetic signals triggered by environmental stress can persist over very long timeframes, contributing to phenotypic changes in relevant traits upon which selection could act. We argue that epigenetic inheritance plays an important role in fast phenotypic adaptation to fluctuating environments, ensuring the survival of the organisms of a population under environmental stress in the short term while maintaining a "bet-hedging" strategy of reverting to the original state if the environment returns to standard conditions. These examples call for a reevaluation of the role of nongenetic information in adaptive evolution, raising questions about its broader relevance in nature.


Assuntos
Evolução Biológica , Hereditariedade , Humanos , Fenótipo , Adaptação Fisiológica/genética , Epigênese Genética
3.
Trends Genet ; 35(6): 423-433, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005339

RESUMO

The current paradigm in the field of gene regulation postulates that regulatory information for generating gene expression is organized into modules (enhancers), each containing the information for driving gene expression in a single spatiotemporal context. This modular organization is thought to facilitate the evolution of gene expression by minimizing pleiotropic effects. Here we review recent studies that provide evidence of quite the opposite: (i) enhancers can function in multiple developmental contexts, implying that enhancers can be pleiotropic, (ii) transcription factor binding sites within pleiotropic enhancers are reused in different contexts, and (iii) pleiotropy impacts the structure and evolution of enhancers. Altogether, this evidence suggests that enhancer pleiotropy is pervasive in animal genomes, challenging the commonly held view of modularity.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Sítios de Ligação , Evolução Molecular , Loci Gênicos , Genoma , Especificidade de Órgãos , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo
4.
PLoS Genet ; 14(5): e1007375, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29723190

RESUMO

Convergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary 'hotspots' are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the 'naked valley' on T2 femurs in Drosophila melanogaster is caused by reduced microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution.


Assuntos
Estruturas Animais/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Estruturas Animais/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/classificação , Evolução Molecular , Larva/genética , Larva/crescimento & desenvolvimento , MicroRNAs/genética , Mutação , Fatores de Transcrição/genética
5.
Cell Rep ; 22(11): 3021-3031, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539428

RESUMO

Developmental genes can have complex cis-regulatory regions with multiple enhancers. Early work revealed remarkable modularity of enhancers, whereby distinct DNA regions drive gene expression in defined spatiotemporal domains. Nevertheless, a few reports have shown that enhancers function in multiple developmental stages, implying that enhancers can be pleiotropic. Here, we have studied the activity of the enhancers of the shavenbaby gene throughout D. melanogaster development. We found that all seven shavenbaby enhancers drive expression in multiple tissues and developmental stages. We explored how enhancer pleiotropy is encoded in two of these enhancers. In one enhancer, the same transcription factor binding sites contribute to embryonic and pupal expression, revealing site pleiotropy, whereas for a second enhancer, these roles are encoded by distinct sites. Enhancer pleiotropy may be a common feature of cis-regulatory regions of developmental genes, and site pleiotropy may constrain enhancer evolution in some cases.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Pleiotropia Genética/genética , Fatores de Transcrição/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...